
HIGHER NON-ABELIAN COHOMOLOGY OF GROUPS

HVEDRI INASSARIDZE

Abstract. The first non-abelian cohomology of groups introduced
by Guin is extended to any dimensions and for a substancially
wider class of coefficients called G-partially crossed P-modules.
The first and the second non-abelian cohomologies of groups are
described in terms of torsors and extensions of groups respectively.
Higher non-abelian cohomology pointed sets are described in terms
of cotriple right derived functors of the group of derivations with
respect to the first contravariant variable. For any short exact co-
efficient sequence a long exact cohomology sequence is obtained
extending the well-known exact cohomology sequences and higher
cohomology of groups with coefficients in any G-group is intro-
duced.

Introduction

Our approach to non-abelian cohomology of groups follows Guin’s
first non-abelian cohomology [5,6] which differs from the classical first
non-abelian cohomology pointed set [10] and from the setting of various
papers on non-abelian cohomology [4,2,3] extending the classical exact
non-abelian cohomology sequence from lower dimensions [10] to higher
dimensions.

Guin defined his first non-abelian cohomology group when the coef-
ficient group is a crossed G-module and obtained a six term exact co-
homology sequence for any short exact sequence of crossed G-modules.

A non-abelian cohomology of groups will be defined in any dimen-
sions ≥ 1 extending Guin’s first non-abelian cohomology group and his
exact cohomology sequence to nine term exact cohomology sequence.
A substantially wider class of coefficients will be used consisting of par-
tially crossed modules over a group P on which acts on the left a group
G that will be called G-partially crossed modules over P . We describe
the first non-abelian cohomology in terms of torsors and the second
non-abelian cohomology in terms of extensions of groups. Moreover a
close relation of non-abelian cohomology of groups with non-abelian
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right derived functors of the group of derivations will be established
and for some particular cases of coefficients a long exact cohomology
sequence will be obtained.

All considered groups will be arbitrary (not necessarily commuta-
tive). An action of a group G on a group A means an action on the left
of G on A by automorphisms and will be denoted by ga, g ∈ G, a ∈ A.
We assume that G acts on itself by conjugation. The center of a group
G will be denoted by Z(G). If the groups G and R act on a group A
then the notation gra means g(ra), g ∈ G, r ∈ R, a ∈ A.

1. G-partially crossed P -modules and the group

Der(G, (A, µ)) of derivations

A precrossed P -module (A, µ) consists of a group P acting on a group
A and a homomorphism µ : A −→ P such that

µ(xa) = xµ(a)x−1, x ∈ P, a ∈ A.

If in addition we have

µ(a)a′ = aa′a−1

for a, a′ ∈ A, then (A, µ) is a crossed P -module.

Definition 1.1. A partially crossed module µ : A −→ P over P is a
precrossed module over P satisfying the equality

aa′a−1 = µ(a)a′ , (1.1)

for all a′ ∈ A and for all a ∈ A such that µ(a) is a commutator of P .

Note that the relation (1.1) is equivalent to the following relation:

ayxa′ = xya′a , (1.2)

for all a′ ∈ A and for all a ∈ A such that µ(a) = xyx−1y−1. In effect,

(1.1) =⇒ (1.2) : take a′ =yx b and (1.2) =⇒ (1.1) : take a′ =x−1y−1

b.
Clearly any crossed module over P is a partially P -crossed module.

Let A be a metabelian (not abelian) group. Consider the precrossed
module

A
τ
−→A/[A,A] = P ,

where τ is the canonical surjection and P acts trivially on A. Then
A

τ
−→ P is a partially crossed module over P which is not a crossed

P -module.



HIGHER NON-ABELIAN COHOMOLOGY OF GROUPS 3

Any precrossed module B
µ
−→P induces in a natural way a partially

crossed module over P as follows:
Consider the Peiffer commutators bb′b−1 µ(b)b′−1 for all b′ ∈ B subject

to the relation: µ(b) is a commutator of P . Let N be the normal
subgroup of B generated by these Peiffers commutators and take the

quotient group B/N . One gets a precrossed module B/N
µ′

−→ P , µ′

being induced by µ. It is easy to check that in fact it is a partially
crossed P -module. Moreover any morphism from B

µ
−→P to a partially

crossed module X
ν
−→C induces in a natural way a unique morphism

B/N
µ′

−→ P
↓ ↓

X
ν
−→ C

.

It is obvious that if A
µ
−→ P is a partially P -crossed module, then

Kerµ is contained in the center of A .

Definition 1.2. Let G,P and A be groups. It will be said that A
µ
−→P

is a G-precrossed module over P if

(1) (A, µ) is a precrossed P -module,
(2) G acts on P and A,
(3) µ : A −→ P is a homomorphism of G-groups,

(4) (gx)a = gxg−1

a for g ∈ G, x ∈ P, a ∈ A (compatibility condition).

If in addition (A, µ) is a crossed P -module, then (A, µ) is called G-
crossed P -module. If conditions (1)-(4) hold it will be said that the
group G acts on the precrossed P -module (A, µ).

Definition 1.3. A G-precrossed P -module (A, µ) will be called
G-partially crossed P -module if in addition the following condition holds:

aa′a−1 = µ(a)a′ or equivalently ayxa′ = xya′a ,

for all a′ ∈ A and a ∈ A such that µ(a) = xyx−1y−1 for some x, y ∈ P .

It is clear that any precrossed (crossed) G-module is in a natural way
a G-precrossed (G-crossed) G-module, G acting on itself by conjuga-
tion. A G-precrossed P -module was called in [8] as precrossed G− P -
bimodule arising confusion with the notion of crossed bimodule defined
in [9](see E.1.5.1) generalising the well-known notion of bimodule. If
f : G′ −→ G is a homomorphism of groups then any G-precrossed
P -module is a G′-precrossed P -module induced by f , G′ acting on A
and P via f .

Note that if (A, µ) is a G-precrossed P -module the equality
rxa = xra
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holds for any x ∈ G, a ∈ A, r ∈ H0(G,P ). In effect, one has

rxa = xx−1rxa = x(x−1
r)a = xra .

Definition 1.4. Let (A, µ) be a G-partially crossed P -module. Denote
by Der(G, (A, µ)) the set of pairs (α, r), α is a crossed homomorphism
from G to A, i.e.

α(xy) = α(x) xα(y) , x, y ∈ G ,

and r is an element of P such that

µα(x) = r xr−1 , x ∈ G .

This set will be called the set of derivations from G to (A, µ).
For any (α, r) ∈ Der(G, (A, µ)) one has

α(x) xra = rxαα(x) ,

for a ∈ A, x ∈ G.
We introduce in Der(G, (A, µ)) a product by

(α, r)(β, s) = (α ∗ β, rs) ,

where (α ∗ β)(x) = rβ(x)α(x), x ∈ G.

Proposition 1.5. Under the aforementioned product Der(G, (A, µ)) is
a group which coincides with the group DerG(G,A) of Guin if (A, µ) is
a crossed G-module viewed as a G-crossed G-module.

Proof. Clearly this product is associative. At first it will be shown
that (α ∗ β, rs) belongs to Der(G, (A, µ)). Put γ = α ∗ β. We have

γ(xy) = rβ(xy)α(xy) = r(β(x) xβ(y))α(x) xα(y) = rβ(x) rxβ(y) ·

· α(x) xα(y).

On the other hand

γ(x)xγ(y) =r β(x)α(x)x(rβ(y)α(y)) =r β(x)α(x)xrβ(y)xα(y) .

Using equality (1.1) one gets γ(xy) = γ(x)xγ(y) showing that γ is a
crossed homomorphism. Further, we have

µγ(x) = µ(rβ(x)α(x)) = rµβ(x)µα(x) = r(s xs−1)r xr−1 = rsr(s−1)r
xr−1 = rsrxs−1xr−1 = rs x(rs)−1 .

Therefore (α ∗ β, rs) ∈ Der(G, (A, µ)). It is obvious that (α0, 1) is
the unit of Der(G, (A, µ)) with α0(x) = 1 for all x ∈ G.
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For (α, r) ∈ Der(G, (A, µ)) take the pair (α, r−1) with α(x) =

= r−1

α(x)−1, x ∈ G. It will be shown that (α, r−1) ∈ Der(G, (A, µ)).
For this it will be proved the equality

r−1xa · r
−1

α(x)−1 = r−1

α(x)−1 · xr
−1

a, x ∈ G, a ∈ A.
(1.3)

In effect, since µ(r
−1

α(x)−1) = r−1µα(x)−1r = r−1xr, one gets

µ(r
−1
α(x)−1)(xr

−1

a) = r−1 xr(xr
−1

a) = r−1xrx−1xr−1

a = r−1xa .

The required relation (1.3) follows now from the equality

µ(r
−1
α(x)−1)(xr

−1

a) = r−1α(x) xr−1

a r−1

α(x) .

Therefore one has

α(xy) = r−1

α(xy)−1 = r−1

(xα(y)−1α(x)−1) = r−1xα(y)−1 r−1

α(x)−1 =

r−1

α(x)−1 xr−1

α(y)−1 = α(x) xα(y) ,

i.e. α is a crossed homomorphism. Moreover,

µα(x) = µ(r
−1

α(x)−1) = r−1µα(x)−1r = r−1 xrr−1r = r−1 xr .

There follows that (α, r−1) ∈ Der(G, (A, µ)). It is easily checked that

(α, r)(α, r−1) = (α, r−1)(α, r) = (α0, 1) .

We conclude that Der(G, (A, µ)) is a group which coincides with the
group DerG(G,A) of derivations defined by Guin [6] when (A, µ) is a
crossed G-module. 2

A homomorphism f : (A, µ) −→ (B, λ) of G-partially crossed P -
modules induces a homomorphism

f ∗ : Der(G, (A, µ)) −→ Der(G, (B, λ))

given by (α, r) 7→ (αf, r).
There is an action of G on Der(G, (A, µ)) defined by

g(α, r) = (α, gr) , g ∈ G , r ∈ P ,

with α(x) = gα(g
−1

x), x ∈ G (see [6,8]). Moreover if P acts on G such
that

(rg)a = rgr−1

a , (rg)r′ = rgr−1

r′ for r, r′ ∈ R, g ∈ G, a ∈ A ,

then there is also an action of P on Der(G, (A, µ)) given by r(α, s) =

(α, rs), α(x) =r α(r
−1

x), r ∈ P , x ∈ G [8].
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It is well-known [1] that the groups G and P acting on each other
and on themselves by conjugation are said to be acting compatibly if

(gr)g′ = grg−1

g′, (rg)r′ = rgr−1

r′ for g, g′ ∈ G, r, r′ ∈ R .
(1.4)

Definition 1.6. It will be said that the groups G and P act on a group
A compatibly if

(gr)a = grg−1

a, (rg)a = rgr−1

a textfor g ∈ G, r ∈ R, a ∈ A .

Proposition 1.7 ([8] ). Let (A, µ) be a G-partially crossed P -module
the groups G and P acting on each other and on A compatibly.
Under the aforementioned actions of G and P on Der(G, (A, µ)) and
the homomorphism γ : Der(G, (A, µ)) → P given by (α, r) 7→ r, the
pair (Der(G, (A, µ)), γ) is a G-precrossed P -module.

2. The first non-abelian cohomology

Let (A, µ) be a G-partially crossed P -module. Define on the group
Der(G, (A, µ)) an equivalence relation as follows:

(α, r) ∼ (β, s)⇐⇒ {
∃a ∈ A : β(x) = a−1α(x) xa,
s = µ(a)−1r mod H0(G,P )

.

Theorem 2.1. Let (A, µ) be a G-partially crossed P -module satisfying
the following conditions:

1) H0(G,P ) is a normal subgroup of P ,
2) for any c ∈ H0(G,P ) and (α, r) ∈ Der(G, (A, µ)) there exists

a ∈ A such that µ(a) = 1 and cα(x) = a−1α(x) xa, x ∈ G.

Then the group Der(G, (A, µ)) induces on the quotient set
Der(G, (A, µ))/ ∼ a group structure and this quotient group will be
called the first cohomology group H1(G, (A, µ)) of the group G with
coefficients in the G-partially crossed P -module (A, µ).

Proof. We have to show that the relation ∼ is a congruence, i.e. if
(α, r) ∼ (α′, r′) and (β, s) ∼ (β ′, s′), then (α, r)(β, s) ∼ (α′, r′)(β ′, s′).
For this it will be used Guin’s proof [6] which remains valid in our
generalized case.

We first prove that

(α, r)(β, s) ∼ (α, rc)(β, s)
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for any c ∈ H0(G,P ). For (β, s) and c ∈ H0(G,P ) there is a ∈ A such
that µ(a) = 1 and a−1β(x)xa, x ∈ G. One gets
rcβ(x)α(x) = r(a−1β(x) xa)α(x) = ra−1 rβ(x) rxaα(x) = ra−1 rβ(x) ·

· α(x) xra .

Since µ(ra)−1 = (rµ(a)r−1)−1 = 1, one has rcs = µ(ra)−1rsc′ with
c′ ∈ H0(G,P ). Therefore, (α, r)(β, s) = (α, rc)(β, s).

Use the equalities

α′(x) = b−1α(x) xb, r′ = µ(b)−1rz

and β ′(x) = d−1β(x) xd, s′ = µ(d)−1st

with z, t ∈ H0(G,P ) and put

(α, rz)(β, s) = (γ, rzs)

and (α′, r′)(β ′, s′) = (γ ′, r′s′)

with γ(x) = rzβ(x)α(x) and γ′(x) = r′β ′(x)α′(x), x ∈ G.
It will be shown that

(α, rz)(β, s) ∼ (α′, r′)(β ′, s′) .

In effect,

γ′(x) = r′(d−1β(x) xd)b−1α(x) xb = µ(b)−1rzd−1 µ(b)−1rzβ(x) µ(b)−1rzxd ·

· b−1α(x) xb = b−1 rzd−1 rzβ(x) rx(zd) α(x) xb = b−1 rzd−1 rzβ(x) ·

· α(x)xrzd xb ,

and µ(rzdb−1) = µ(b)−1rzµ(d)−1z−1r−1 = r′s′t−1s−1z−1r−1,
r′s′ = µ(rzd b)−1rzst with t ∈ H0(G,P ).

There follows that (α, rz)(β, s) ∼ (α′, r′)(β ′, s′). Therefore
(α, r)(β, s) ∼ (α′, r′)(β ′, s′) and the equivalence ∼ is a congruence.
2

Clearly any partially crossedG-module viewed as aG-partially crossed
G-module satisfies conditions of Theorem 2.1, in this case
H0(G,G) = Z(G) and for (α, g) ∈ Der(G, (A, µ)) = DerG(G,A),
c ∈ Z(G) the equality α(cx) = α(xc), x ∈ G, implies α(c) cα((x) =
α(x) xα(c) and µ(α(c)) = gcg−1c−1 = 1; we recover Guin’s first co-
homology group of a group G with coefficients in a crossed G-module
[6].

If f : (A, µ) → (B, λ) is a homomorphism of G-partially crossed
P -modules satisfying conditions of Theorem 2.1, then f∗ induces a ho-
momorphism f1 : H1(G, (A, µ)) → H1(G, (B, λ)). The above defined
action of G on Der(G, (A, µ)) induces an action of G on H1(G, (A, µ))
given by

g[(α, r)] = [g(α, r)] , g ∈ G .
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By our next statement it will be shown that Guin’s first non-abelian
cohomology group is closely related with torsors. A similar relationship
of the first non-abelian pointed set cohomology with principal homo-
geneous spaces is well-known [1]. To this aim the notion of a G-torsor
over a partially crossed G-module will be introduced.

Definition 2.2. A G-torsor over a partially crossed G-module (A, µ)
is a pair (E, f) consisting of a non-empty G-set E with an action on the
right of A on E denoted by xa (for x ∈ E, a ∈ A ) which is compatible
with the action of G and such that for any x, y ∈ E there is a unique
element b ∈ A with y = xb, and f is a map from E to G such that

1) for any x ∈ E, s ∈ G the following equality holds

µ(a) = f(x)sf(x)−1s−1

with sx = xa, a ∈ A;
2) if y = xb then

f(y) = µ(b−1)f(x) , x, y ∈ E , b ∈ A .

Definition 2.3. It will be said that G-torsors (E, f) and (E ′, f ′) over
a partially crossed G-module (A, µ) are isomorphic if there is a bijection
ϑ : E → E′ compatible with the actions of G and A such that

f(x) = f ′(x) mod Z(G)

for any x ∈ E.

Denote by E(G,A) the set of classes of isomorphic G-torsors over
the partially crossed G-module (A, µ).

It is introduced a product on the set E(G,A) as follows. Let [(E1, f1)],
[(E2, f2)] ∈ E(G,A) and let x ∈ E1, y ∈ E2. Take A with a new action
of G given by (sa)′ = f1(x)cb sa for any s ∈ G, a ∈ A with sx = xb,
sy = yc. Denote so defined G-group by E and define the action of A
on E by translation on the right. Define a map g : E → G given by

g(a) = µ(a−1)f1(x)f2(x) .

Then the pair (E, g) is aG-torsor over the partially crossedG-module
(A, µ) and define the required product by

[(E1, f1)] ◦ [(E2, f2)] = [(E, g)] .

Theorem 2.4. If (A, µ) is a partially crossed G-module, there is a
natural isomorphism between E(G,A) and H 1(G,A).

Proof. Let [(E, f)] ∈ E(G,A) and take x ∈ E. For any s ∈ G one has
sx = xa and an induced map αx : G −→ A defined by αx(s) = a that
is a cocycle. Using 1) of Definition 2.2 we see that the pair (αx, f(x))
is an element of Der(G, (G,A)) = DerG(G,A).
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Define a map α : E(G,A) −→ H1(G,A) by α([(E, f)]) = [(αx, f(x))].
We have to show the correctness of α.

If y ∈ E and y = xb, b ∈ A, then sy = sx sb = xa sb = xbb−1a sb =
yb−1a sb. By 2) f(y) = µ(b−1)f(x). There follows that (αx, f(x)) ∼
(αy, f(y)). Let (E, f) be isomorphic to (E ′, f ′), i.e. there is a bijection
ϑ : E −→ E′ with properties given in Definition 2.2. Take x′ ∈ E′ and
ϑ(x) = x′, x ∈ E. Then ϑ(sx) = sϑ(x) = sx′ and ϑ(xa) = ϑ(x)a = x′a
with sx = xa. Thus, αx = αx′ . Since f(x) = f ′(x′) mod Z(G), one
deduces (αx, f(x)) ∼ (αx′, f

′((x′)). Therefore, the map α is correctly
defined.

Let [(α, g)] ∈ H1(G,A). Take A with a new action of G given by
(sx)′ = α(s) sx, x ∈ A, s ∈ G, and with the action of A on itself
by translation on the right. Denote so obtained G-set by Pα. Define a
map fg : Pα → G by fg(x) = µ(x−1)g, x ∈ Pα, which verifies conditions
1) and 2) of Definition 2.2. In effect, if (sx)′ = xa then α(s)sx = xa.
On the other hand µα(s) = gsg−1s−1. Thus, µα(s)µ(sx) = µ(xa),
gsg−1s−1sµ(x)s−1 = µ(x)µ(a). Whence

µ(a) = µ(x)−1gsg−1µ(x)s−1 = fg(x)sfg(x)
−1s−1

and fg verifies condition 1).
If y = xb then one has

fg(y) = µ(y−1)g = µ(b−1x−1)g = µ(b−1)µ(x−1)g = µ(b−1)f(x) .

Thus fg satisfies condition 2) too. One gets a G-torsor (Pα, fg) over the
partially crossed G-module (A, µ) and define β : H1(G,A)→ E(G,A)
by β([(α, g)]) = [(Pα, fg)].

If (α, g) ∼ (α′, g′) then α′(s) = b−1α(s)sb and g′ = µ(b−1)gmodZ(G).
It will be shown that (Pα, fg) is isomorphic (Pα′ , fg′).

Define ∂ : Pα −→ Pα′ by ∂(x) = b−1x, x ∈ Pα. Then ∂((sx)′) =
b−1α(s) sx and (s(∂(x)))′ = (s(b−1x))′ = α′(s) s(b−1x) = b−1α(s) sb
sb−1 sx = b−1α(s) sx. Thus, ∂((sx)′) = (s(∂(x)))′. It is obvious that ∂
preserves the action of A.

For x ∈ Pα one gets

fg′(∂(x)) = fg′(b
−1x) = µ(x−1b)g′ = µ(x−1)µ(b)µ(b−1)g mod Z(G) =

µ(x−1)g mod Z(G) = fg(x) mod Z(G) .

This implies that (Pα, fg) is isomorphic to (Pα′, fg′). Therefore the
map β is correctly defined.

It is easily checked that α is a homomorphism and αβ = 1, βα = 1.
2
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3. The second non-abelian cohomology

Now the second cohomology H2(G, (A, µ)) of a group G with coeffi-
cients in a G-partially crossed P -module (A, µ) will be defined.

Consider the diagram

M
l0−→−→
l1

F
τ
−→G (3.1)

with F a free group, τ is a surjective homomorphism, M is a group
consisting of pairs (x, y), x, y ∈ F , such that τ(x) = τ(y) and l0, l1 are
canonical projections, l0(x, y) = x, l1(x, y) = y. That means (M, l0, l1)
is the simplicial kernel of τ . Put ∆ = {(x, x), x ∈ F} ⊂M .

Then (A, µ) can be viewed as a F -partially crossed P -module induced
by τ and as a M -partially crossed P -module induced by τ l0 (or by

τ l1). Let Z̃1(M, (A, µ)) be the subset of Der(M, (A, µ)) consisting of
elements of the form (α, 1) satisfying the condition α(∆) = 1, implying

α(M) ⊂ Z(A). There follows that Z̃1(M, (A, µ)) is an abelian subgroup
of Der(M, (A, µ)).

Define on Z̃1(M, (A, µ)) a relation by

(α′, 1) ∼ (α, 1)⇐⇒ (β, h) ∈ Der(F, (A, µ))

such that the following equality holds

(α′, 1) = (βl0, h)(α, 1)(βl1, h)
−1

in the group Der(M, (A, µ)).
We see that if (α′, 1) ∼ (α, 1) one has

α′(x) = βl1(x)
−1 hα(x)βl0(x) , x ∈M .

Proposition 3.1. The relation ∼ defined on Z̃1(M, (A, µ)) is an equi-
valence.

Proof. Clearly this relation is reflexive. If (α′, 1) ∼ (α, 1), i.e. (α′, 1) =
(βl0, h)(α, 1)(βl1, 1)−1, (β, h) ∈ Der(F, (A, µ)), then (α, 1) = (βl0, h)

−1·

·(α′, 1)(βl1, h) and (βl0, h)
−1 = (β̃l0, h

−1), (βl1, h) = (β̃l1, h
−1)−1 with

(β̃, h−1) = (β, h)−1 ∈ Der(F, (A, µ)). Thus the relation ∼ is symmetric.
It remains to show the transitivity.

Let (α′, 1) ∼ (α, 1) and (α′′, 1) ∼ (α′, 1). Then one has

(α′, 1) = (βl0, h)(α, 1)(βl1, h)
−1 ,

(α′′, 1) = (β ′l0, h
′)(α′, 1)(β ′l1, h

′)−1

with (β, h), (β ′, h′) ∈ Der(F, (A, µ)).



HIGHER NON-ABELIAN COHOMOLOGY OF GROUPS 11

There follows that

(α′′, 1) = (β ′l0, h
′)(βl0, h)(α, 1)(βl1, h)

−1(β ′l1, h
′)−1 =

((β ′ ∗ β)l0, h
′h)(α, 1)((β ′ ∗ β)l1, h

′h)−1

with (β ′ ∗ β, h′h) = (β ′, h′)(β, h) ∈ Der(F, (A, µ)). Therefore (α′′, 1) ∼
(α, 1) and the relation ∼ is an equivalence. 2

Proposition 3.2. The quotient set Z̃1(M, (A, µ))/ ∼ is independent
of the diagram (3.1) and is unique up to bijection.

We need the following

Lemma 3.3. Let A be a G-group and let α : M → A be a crossed
homomorphism such that α(∆) = 1. Then there exists a map q : F →
A such that

α(y) = ql1(y)
−1ql0(y) , y ∈M .

Proof. Note that if (x, x′′), (x′, x′′) ∈ M , then α(x, x′′) = α(x′, x′′) ·
·α(x, x′). In effect the equalities (x, x′′) = (1, x′′x′−1)(x, x′) and (x′, x′′) =
(1, x′′x′−1)(x′, x′) imply α(x, x′′) = α(1, x′′x′−1)α(x, x′) and α(x′, x′′) =
α(1, x′′x′−1)α(x′, x′) = α(1, x′′x′−1) giving the required equality.

In particular, applying this equality for (x, x), (x′, x) ∈ M one gets
α(x, x) = α(x′, x)α(x, x′). Therefore α(x′, x) = α(x, x′)−1 for any
(x, x′) ∈M .

Take a section η : G −→ F , τη = 1G and define a map q : F −→ A
by

q(x) = α(x, ητ(x)) , x ∈ F .

For (x, x′) ∈M one has

ql1(x, x
′)−1ql0(x, x

′) = q(x′)−1q(x) = (α(x′, ητ(x′))−1α(x, ητ(x)) =

α(ητ(x′), x′)α(x, ητ(x)) .

On the other hand, since α(x, x′) = α(1, x′x−1) for all (x, x′) ∈M , on
gets α(ητ(x′), x′) = α(1, x′ητ(x′)−1) and α(x, ητ(x)) = α(1, ητ(x)x−1).

But (1, x′ητ(x′)−1)(1, ητ(x)x−1) = (1, x′x−1). Therefore, finally we
obtain the equality

α(x, x′) = α(1, x′ητ(x′)−1)α(1, ητ(x)x−1) = ql1(x, x
′)−1ql0(x, x

′) .

2

Proof of Proposition 3.2 Consider the commutative diagram

M ′

l′
0−→−→
l′
1

F ′ τ ′
−→ G

γ1 ↓ γ2 γ1 ↓ γ2

M
l0−→−→
l1

F
τ
−→ G

,
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(M, l0, l1) and (M ′, l′0, l
′

1) being simplicial kernels of τ and τ ′ respec-
tively, liγ1 = γ1l

′

i, liγ2 = γ2l
′

i, i = 0, 1, τγ1 = τγ2 = τ ′.
The pair (γi, γi) induces a homomorphism

Der(M, (A, µ)) −→ Der(M ′, (A, µ))

given by (α, r) 7→ (αγi, r), i = 1, 2.
If (α′, 1) ∼ (α, 1), i.e. (α′, 1) = (βl0, h)(α, 1)(βl1, h)

−1 with (β, h) ∈
Der(F, (A, µ)), then

α′γi(y) = βγil
′

1(y)
−1 hαγi(y)βγil

′

0(y) , y ∈M ′ .

Thus (α′γi, 1) ∼ (αγi, 1), i = 1, 2, and one gets a natural map

εi : Z̃1(M, (A, µ))/ ∼−→ Z̃1(M ′, (A, µ))/ ∼

induced by the pair (γi, γ̃i) and given by [(α, 1)] 7→ [(αγ̃i, 1)], i = 1, 2.
It will be shown that ε1 = ε2. By Lemma 3.3 there is a map q : F →

A such that
α(y) = ql1(y)

−1ql0(y) , y ∈M .

Take the homomorphism s : F ′ →M given by

s(x′) = (γ1(x
′), γ2(x

′)) , x′ ∈ F ′ .

It is clear that (αs, 1) ∈ Der(F ′, (A, µ)). Further one has

((αsl′1)
−1αγ̃2αsl

′

0)(x
′

0, x
′

1) = αs((x′)−1αγ̃2(x
′

0, x
′

1)αs(x
′

0) =

α(γ1(x
′

1), γ2(x
′

1))
−1αγ̃2(x

′

0, x
′

1)α(γ1(x
′

0), γ2(x
′

0)) = qγ1(x
′

1)
−1qγ2(x

′

1) =

qγ2(x
′

1)
−1qγ2(x

′

0)qγ2(x
′

0)
−1qγ1(x

′

0) = qγ1(x
′

1)
−1qγ1(x

′

0) = αγ̃1(x
′

0, x
′

1)

for any (x′0, x
′

1) ∈ M ′. Therefore (αγ̃1, 1) ∼ (αγ̃2, 1) with (αs, 1) ∈
Der(F ′, (A, µ)) implying the required equality ε1 = ε2.

Now the proof of the uniqueness is standard. 2

It is easy to check that the quotient set Z̃1(M, (A, µ))/ ∼ is naturally
bijective to H2(G,A) when A is a G-module viewed as a crossed G-
module. That fact motivates the following

Definition 3.4. Let (A, µ) be a G-partially crossed P -module. The

quotient set Z̃1(M, (A, µ))/ ∼ will be called the second cohomology of
G with coefficients in (A, µ) and denoted by H 2(G, (A, µ)).

A homomorphism of G-partially crossed P -modules f : (A, µ) →
(B, λ) induces a map of pointed sets

f 2 : H2(G, (A, µ)) −→ H2(G, (B, λ))

given by f2([(α, 1)]) = [(fα, 1)]. It is easy to see that there is a
canonical surjective map ϑ : H2(G,Kerµ) → H2(, (A, µ)) given by
[α] 7→ (α, 1)].
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Proposition 3.5. Let (A, µ) be a G-partially crossed P -module. There
is an action of G on H2(G, (A, µ)) such that Z(G) acts trivially. If P
acts on Gand satisfies the compatibility condition (1.4), then there is
also an action of P on H2(G, (A, µ)).

Proof. Consider the diagram

MG

l0−→−→
l1

FG
τG−→ G

with FG the free group generated by G, τG is the canonical homomor-
phism and (MG, l0, l1) is the simplicial kernel of τG. There is an action
of G on MG defined as follows:

g(|g1|
ε · · · |gn|

ε) = |gg1|
ε · · · |ggn|

ε , g, g1, . . . , gn ∈ G ,

with ε = ±1. This action induces an action of G on MG by

g(x, x′) = (gx, gx′) , g ∈ G , (x, x′) ∈MG .

Finally one gets an action of G on Der(MG, (A, µ)) given by

g(α, r) = (α̃, gr)

with α̃(m) = gα(g
−1

m), g ∈ G, m ∈ MG, inducing an action of G

on D̃er(MG, (A, µ)) and on Z̃1(MG, (A, µ)) too. If (α, 1) ∼ (α′, 1)
it is easy to see that g(α, 1) ∼ g(α′, 1), g ∈ G, defining an action
of G on H2(G, (A, µ)). Since the above defined surjective map ϑ :
H2(G,Kerµ) → H2(G, (A, µ)) is a G-map and Z(G) acts trivially on
H2(G,Kerµ), there follows that Z(G) acts trivially on H2(G, (A, µ))
too. 2

Let (A, µ) be a G-partially crossed P -module. It can be shown easily
that there is an action of H0(G,P ) on H2(G,Kerµ) given by r[α] =
[rα], r ∈ H0(G,P ) with α : MG → Kerµ a crossed homomorphism
under the action of G on A such that α(∆) = 1.

Let

1 −→ (A, 1)
ϕ
−→ (B, µ)

ψ
−→ (C, λ) −→ 1 (3.2)

be a short exact sequence of G-partially crossed P -modules. If the
action of H0(G,P ) on H2(G,A) is trivial then there is an action of
H1(G, (A, µ)) on H2(G,A) given by

(α,r)[γ] = [rγ] .
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We have to show that rγ is a crossed homomorphism and this action
is correctly defined. Consider the diagram

MG

l0−→−→
l1

FG
τG−→ G

↓ α

A
ϕ
−→ B

ψ
−→ C

. (3.3)

There is a crossed homomorphism β : FG → B such that ψβ = ατG.
Take the product

(βl0, r)(ϕγ, 1)(βl0, r)
−1 = (γ̃, 1)

in the group Der(MG, (B, µ)). Then γ̃(x) = βx)−1rϕγ(x)β(x) = rϕγ(x),
x ∈MG. Therefore rγ : MG → A is a crossed homomorphism such that
rγ(∆) = 1. If (α′, r′) ∈ (α, r)] ∈ H1(G, (C, λ)), i.e. (α, r) ∼ (α′, r′),
then α′(x) = c−1α(x)xc and r′ = λ(c)−1rt with c ∈ C, t ∈ H0(G,P ).
There follows that

ϕ(r
′

γ(x)) = r′ϕγ(x) = λ(c)−1rtϕγ(x) = µ(b)−1rtϕγ(x) = b−1 rtϕγ(x)b =
rtϕγ(x) = ϕ(rtγ(x)) , x ∈ MG , with ψ(b) = c .

Hence [r
′

γ] = [rtγ] = [rγ] proving the correctness of the action.
Using diagram (3.3) for the short exact sequence (3.2) one defines as

follows a connecting map

δ1 : H1(G, (C, λ)) −→ H2(G,A)

which is a crossed homomorphism when (G, (C, λ)) verifies conditions
of Theorem 2.1.

For [(α, r)] ∈ H1(G, (C, λ)) take a crossed homomorphism β : FG →
B such that ψβ = ατG. Thus there is a crossed homomorphism
γ : MG → A such that ϕγ = βl1)

−1βl0. It is clear that γ(∆) = 1.
Define

δ1([(α, r)]) = [γ] .

We must show the correctness of δ1. For another β ′ : FG → B with
ψβ′ = ατG, one has ψβ′ = ψβ and there is a crossed homomorphism
σ : FG → A such that β′ = βψσ. Then one gets

ϕγ′ = (β ′l1)
−1β ′l0 = (βϕσ)l−1

1 (βϕσ)l0 = ϕσl−1
1 βl−1

1 βl0ϕσl0 =

βl−1
1 βl0ϕσl

−1
1 ϕσl0 = ϕ(γσl−1

1 σl0) .

Hence [γ] = [γ′].
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If (α, r) ∼ (α′, r′) then

α′(y) = c−1α(y)yc , c ∈ C , y ∈MG ,

r′ = λ(c)−1rt , t ∈ H0(G,P ) .

Take β′ : FG → B such that β ′(x) = b−1β(x) xb with ψ(b) = c
and ψβ = ατG. Then (β′l−1

1 β ′l0)(y) = β ′(x2)
−1β ′(x1), y = (x1, x2) ∈

MG. Hence ϕγ′(y) = (β ′l−1
1 β ′l0)(y) = (b−1β(x2)

x2b)−1b−1β(x1)
x1b =

x2b−1β(x2)
−1β(x1)

x1b = β(x2)
−1β(x1) = ϕγ(y). Whence γ ′ = γ.

Therefore the connecting map δ1 is correctly defined.
For the short exact sequence 3.2 a connecting map δ2 : H2(G, (C, λ))
→ H3(G,A) will be also defined. To this end consider the canonical
free simplicial resolution of the groupG in the category of groups acting
on the abelian group A:

· · ·
−→...−→
F3

τ3−→M2

l2
0−→...−→
l2
3

F2
τ2−→M1

l1
0−→
−→
−→
l1
2

F1
τ1−→M0

l0
0−→−→
l0
1

F0
τ0−→ G

where F0 = FG, Fi = FMi−1
, i ≥ 1, τi is the canonical homomorphism

and (Mi, l
i
0, · · · , l

i
i+1) is the simplicial kernel of (li−1

0 τi, · · · , l
i−1
i τi), i ≥ 0

(see [7]). It will be used the equivalence of functors Hn+1(−, A) ≈
Ln Der(−, A), n ≥ 1, when A is a Z[G]-module. There is an action of
Der(F0, (C, λ)) on H3(G,A) defined as follows:

(α,r)[f ] = [rf ] ,

where f : F2 → A is a crossed homomorphism with
∏3
i=0(fl

2
i τ3)

εi = 1,
εi = (−1)i, and (α, r) ∈ Der(F0, (C, λ)). The correctness of this action
is proved similarly to the case of a short exact sequence of crossed
G-modules (see [8]).

For anyG-partially crossed P -module (A, µ) denote by IDer(G, (A, µ))
a subgroup of Der(G, (A, µ)) consisting of elements of the form (α, r),
r ∈ H0(G,P ).

If either the aforementioned action of Der(F0, (C, λ)) on H3(G,A) is
trivial or Der(F0, (C, λ)) = IDer(F0, (C, λ)) and H0(G,P ) acts trivially
on H2(G,Kerλ), then there is a connecting map δ2 : H2(G, (C, λ))→
H3(G,A) given by

δ2([(α, r)]) = [γ] , (α, 1) ∈ Z̃1(MG, (C, λ)) ,

where ϕγ = βτ2 with β =
∏2

( βl
1
i )
εi, εi = (−)i, and ψβ = ατ1. The

correctness of δ2 is proved similarly to the case of a short exact sequence
of crossed G-modules (see [8]).
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Theorem 3.6. Let (3.2) be a short exact sequence of G-partially crossed
P -modules satisfying conditions of Theorem 2.1. Then there is an exact
cohomology sequence

1→ H0(G,A)
ϕ0

−→ H0(G,B)
ψ0
−→ H0(G,C)

δ0
−→ H1(G,A)

ϕ1

−→

H1(G, (B, µ))
ψ1

−→ H1(G, (C, λ))
δ1
−→ H2(G,A)

ϕ2

−→ H2(G, (B, µ))

ψ2

−→ H2(G, (C, λ)) ,

where ϕ0, ψ0, δ0, ϕ1 and ψ1 are homomorphisms. If in addition
H0(G,P ) acts trivially on H2(G,A), then δ1 is a crossed homomor-
phism under the action of H1(G, (C, λ)) on H2(G,A) induced by the
action of P on A. Moreover, if either the action of Der(F0, (C, λ))
on H3(G,A) is trivial (in particular if P acts trivially on A) or
Der(F0, (C, λ)) = IDer(F0, (C, λ)) and H0(G,P ) acts trivially on
H2(G,Kerλ), then the sequence

H2(G, (B, µ))
ψ2

−→ H2(G, (C, λ))
δ2
−→ H3(G,A)

is also exact.

Proof. The exactness of the sequence

1 −→ H0(G,A)
ϕ0

−→ H0(G,B)
ψ0

−→ H0(G,C)
δ0
−→ H1(G,A)

is well known [10].
If c ∈ H0(G,C) then δ0(c) = [α] with α(x) = ϕ−1(b−1 xb), x ∈ G

and ψ(b) = c. There follows that (α0, 1) ∼ (ϕα, 1) where α0 is a
trivial map, since ϕα(x) = b−1α0

xb, x ∈ G, and µ(b) ∈ H0(G,P )
because µ(b) = λψ(b) and xλ(c) = λ( xc) = λ(c), x ∈ G. Therefore
Im δ0 ⊂ Kerϕ1.

Let [α] ∈ H1(G,A) such that (α0, 1) ∼ (ϕα, 1). Then ϕα(x) =
b−1 xb, x ∈ G and µ(b) ∈ H0(G,P ). One has ψ(b−1xb) = ψϕα(x) =
1. Thus ψ(b) = ψ(xb) = xψ(b), whence ψ(b) ∈ H0(G,C). Clearly
δ0(ψ(b)) = [α]. Therefore Kerϕ1 ⊂ Im δ0. Obviously the composite
ψ1ϕ1 is the trivial map.

Let [(α, r) ∈ H1(G, (B, µ)) such that (α0, 1) ∼ (ψα, 1). Then
ψα(x) = c−1 xc, c ∈ C, and r = λ(c)−1t, t ∈ H0(G,P ). Let
ψ(b) = λ(c) and r = µ(b)−1t. Take α̃(x) = bα(x) xb−1, x ∈ G. Since
ψα̃(x) = 1, x ∈ G, one has ϕ−1α̃ : G → A and (α, r) ∼ (α̃, 1). There-
fore ϕ1([ϕ−1α̃]) = [(α, r)].

Let [(α, r) ∈ H1(G, (B, µ)). Then ψ1([(α, r)]) = [(ψα, r)]. Consider
the diagram ? and take the crossed homomorphism ατG : FG → B.
Then ϕγ = (ατGl1)

−1ατGl0 and δ1ψ1([(α, r)]) = [γ]. But γ = α0 is the
trivial map, since ατGl0 = ατGl1. Therefore Imψ1 ⊂ Ker δ1.
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Let [(α, r)] ∈ H1(G, (C, λ)) such that δ1([(α, r)]) = 1. If β : FG → B
is a crossed homomorphism such that ψβ = ατG, then δ1([(α, r)]) = [γ]
with ϕγ = (βl1)

−1βl0. Thus there is a crossed homomorphism η :
FG → A such that γ = (ηl1)

−1ηl0. Hence one gets

(βl1)
−1βl0 = (ϕηl1)

−1ϕηl0 , (ϕη−1β)l0 = (ϕη−1β)l1 ,

implying a crossed homomorphism α : G → B such that (ϕη)−1β =
ατG. One has µβ(x) = λψβ(x) = λατG = rτG(x)r−1, whence (β, r) ∈
Der(FG, (B, µ)) and (α, r) ∈ Der(G, (B, µ)). Evidently, ψ1([(α, r)]) =
[(α, r)].

The rest of the proof repeats with minor modifications the proof of
the exactness of the cohomology sequence for a coefficient short exact
sequence of crossed G-modules [8]. 2

Clearly for a short exact sequence of crossed G-modules we recover
the known exact cohomology sequence [6, 8]. Note also that Theorem
3.6 remains true for arbitrary G-partially crossed P -modules but in
this case ϕ1, ψ1 and δ1 are maps of pointed sets.

Now for any partially crossed G-module (A, µ) the second cohomol-
ogy H2(G,A) will be described in terms of extensions of groups.

Definition 3.7. An extension of G by a partially crossed G-module

(A, µ) is a pair E = (1 → A
σ
−→X

ψ
−→ G −→ 1, γ), where 1 −→ A

σ
−→

X
ψ
−→ G −→ 1 is a short exact sequence of groups, γ is a section of ψ,

that is ψγ = 1G, one has the equality

ga = σ−1(γ(g)σ(a)γ(g)−1)

for a ∈ A, g ∈ G, and the following additional condition holds:

Ker ψ ⊂ Z(A) ,

ψ being the restriction of ψ on the subgroup of X generated by γ(G).

Example 3.8. Let A C G be the semidirect product of A and G. Then
one has an exact sequence of groups

1 −→ A
σ0−→ A C G

ψ0
−→ G −→ 1 ,

where σ0(a) = (a, 1), ψ0(a, g) = g. Take the canonical section γ0 of ψ0

given γ0(g) = (1, g). It is easy to see that the pair (1 −→ A
σ0−→ A C

G
ψ0
−→ G, γ0) is an extension of G by (A, µ) called trivial.

Definition 3.9. It will be said that E = (1 → A
σ
−→X

ψ
−→ G → 1, γ)

is equivalent to E ′ = (1 → A
σ′
−→ X ′

ψ′

−→ G → 1), γ ′) if there exist
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a homomorphism ϑ : X → X ′ and an element g ∈ G such that the
diagram

1 −→ A
σ
−→ X

ψ
−→ G −→ 1

↓ g ↓ ϑ ||

1 −→ A
σ′
−→ X ′

ψ′

−→ G −→ 1

is commutative, g : A→ A is the automorphism induced by the action
of g on A, and for any element x ∈ G one has the equality

µ(ϑγ(x)γ ′(x)−1) = gxg−1x−1 .

Clearly this relation ∼ is reflexive and symmetric. So for the relation
∼ to be an equivalence it remains to show the transitivity. Let E ∼ E′

and E ′ ∼ E′′. Then the diagram

E = 1 −→ A
σ
−→ X

ψ
−→← G −→ 1

↓ g ↓ ϑ ||

E ′ = 1 −→ A
σ′
−→ X ′

ψ′

−→← G −→ 1

↓ h ↓ κ ||

E ′′ = 1 −→ A
σ′′
−→ X ′′

ψ′′

−→← G −→ 1

is commutative and one has the equalities

µ(ϑγ(x) γ ′(x)−1) = gxg−1x−1 ,

µ(κγ ′(x)γ′′(x)−1) = hxh−1x−1 .

We shall show that µ(κϑγ(x) γ′′(x)−1) = hgxg−1h−1x−1. In effect,
since κϑγ(x)γ′′(x)−1(κγ′(x)γ′′(x)−1)−1 = κϑγ(x)κγ′(x)−1 = κ(ϑγ(x) ·
·γ ′(x)−1, one gets

µ(κϑ(x)γ′′(x)−1) = µκ(ϑγ(x)γ ′(x)−1µκγ′(x) γ′′(x)−1) =

= h(gxg−1x−1)h−1hxh−1x−1 = hgxg−1h−1x−1 .

Therefore the relation ∼ is an equivalence. Denote by E1(G,A) the
set of equivalence classes of extensions of G by the partially crossed
G-module (A, µ).

Theorem 3.10. There is a natural bijection

η : H2(G,A)
≈

−→ E1(G,A) .
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Proof. The map η is defined as follows. For [(α, 1)] ∈ H2(G,A)
consider the diagram

MG

l0−→−→
1

FG
τ
−→ G

↓ α
A

,

take the semidirect product A C FG, FG acting on A via G and intro-
duce an equivalence relation:

(a, x) ∼ (a′, x′)
ρ
⇐⇒ τ(x) = τ(x′) and a = a′ · α(x, x′). In fact the

equivalence ρ is a congruence, since if (a, x) ∼ (a′, x′) and (b, y) ∼
(b′, y′), one has

axb = a′α(x, x′) xb′ xα(y, y′) = a′ xb′α(xy, x′y′) .

Denote C = A C FG/ρ. One gets an exact sequence of groups

1 −→ A
σ
−→C

ψ
−→ G −→ 1 ,

where σ(a) = [(a, 1)], ψ([(a, x)]) = τ(x) and the following diagram

MG

l0−→−→
l1

FG
τ
−→ G

↓ α ↓ δ ||

A
σ
−→ C

ψ
−→ G

is commutative, δ(x) = [(1, x)], σα = δl1δl
−1
0 .

Take a section γ : G → C given by γ(g) = [(1, |g|), g ∈ G. It is
easy to see that γ(G) = Im δ. Therefore Ker(ψ |

γ(G)) = δ(Ker τ). The

equality σα(1, x) = δ(x), x ∈ Ker τ , implies Ker(ψ |
γ(G)) ⊂ Z(A) and

there follows that so constructed pair

E = (1 −→ A
σ
−→C

ψ
−→ G −→ 1, γ)

is an extension of G by (A, µ).
Define η(([(α, 1)]) = [E]. We have to show the correctness of η. Let

(α, 1) ∼ (α′, 1), that means

α′(x) = βl1(x)
−1hα(x)βl0(x) , x ∈MG ,

for some (β, h) ∈ Der(FG, (A, µ)) (see diagram 3.3) and let E ′ = (1 −→

A
σ′
−→ C ′

ψ′

−→ G −→ 1, γ ′) be the extension ofG by (A, µ) corresponding
to (α′, 1).

Define a map ν : A C FG −→ A C G given by ν(a, x) = (haβ(x), x).
So defined ν provides a homomorphism, since ν((a, x)(b, y)) = ν(a xb, xy)
= (h(a xb)β(xy), xy) and ν(a, x)ν(b, y) = (haβ(x), x)(hbβ(y), y) =
(haβ(x) x(hbβ(y)), xy) = (ha hxbβ(x) xβ(y), xy) = (h(a xb)β(xy), xy).
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The homomorphism ν induces a homomorphism ν′ : A C FG/ρ →

A C FG/ρ
′ given by ν′([(a, x)] = [ν(a, x)]. In effect, let (a, x)

ρ
∼ (a′, x′),

that means a = a′α(x, x′) and τ(x) = τ(x′). We have to show that
haβ(x)

ρ′

∼ ha′β(x′), where α′(x, x′) = β(x′)−1hα(x, x′)β(x).
One has

haβ(x) = ha′ hα(x, x′)β(x) = ha′β(x′)α′(x, x′) .

Thus ν′ is a correctly defined homomorphism and the diagram

A C FG −→ A C FG/ρ = C
↓ ν ↓ ν′

A C FG −→ A C FG/ρ
′ = C ′

is commutative.
Now consider the following diagram

1 −→ A
σ
−→ C

ψ
−→ G −→ 1

↓ h ↓ ν′ ||

1 −→ A
σ′
−→ C ′

ψ′

−→ G −→ 1

with sections γ : G→ C, γ′ : G→ C ′ defined as above. Clearly σ′h =
ν ′σ and ν′γ(x)γ(x)−1 = ν ′([(1, |x|))δ′(x) = [(β(|x|), |x|)][(1, |x|)]−1 =
[(β|x|), 1)]. But µβ(|x|) = hxh−1x−1. There follows that [E] = [E′].

Conversely, define a map η′ : E1(G,A) → H2(G,A) as follows. Let

[E] ∈ E1(G,A) and E = (1→ A
σ
−→C

ψ
−→ G→ 1, γ). Then one gets a

commutative diagram

MG

l0−→−→
l1

FG
τ
−→ G

↓ α ↓ δ ||

A
σ
−→ C

ψ
−→ G

with δ induced by γ and σα = δl1δl
−1
0 . Clearly α is a crossed homomor-

phism such that α(∆) = 1 and Imα ⊂ Z(A). Define η′([E]) = [(α, 1)].
We have to show the correctness again. If δ′ is another homomor-

phism such that βδ′ = τ , then δ(y) δ′(y)−1 ∈ Z(A), y ∈ FG. Thus δδ′−1

induces a crossed homomorphism β : FG → Z(A) and it is obvious that
(α′, 1) = (βl0, 1)(α, 1)(βl1, 1)−1 with (β, 1) ∈ Der(FG, A).

Assume now that E is equivalent to E′ = (1→ A
σ′
−→ C ′

ψ′

−→ G→ 1,
γ′) by the pair (h : A → A, ϑ : C → C ′) implying the equality
µ(ϑγ(x)γ ′(x)−1) = hxh−1x−1, x ∈ G.

By using the equalities ψδ = ψ′δ′ = τ , σα = δl1δl
−1
0 , σ′α′ = δ′l1δ

′l−1
0 ,

σ′h = ϑσ, one gets ϑδ = σ′βδ′, ϑδl0 = σ′βl0δ
′l0, ϑδl1 = σ′βl1δ

′l1, where
β : FG −→ A is a crossed homomorphism induced by ϑδδ′−1.
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Clearly (β, h) is an element of Der(FG, A). Further, σαδl0 = δl1, so
one has ϑσαϑδl0 = ϑδl1 and the following equalities

ϑσασ′βl0δ
′l0 = σ′βl1δ

′l1 ,

ϑσασ′βl0 = σ′βl1δ
′l1δ

′l−1
0 ,

σ′hασ′βl0 = σ′βl1σ
′α′ .

Finally α′ = βl−1
1 hαβl0.

Therefore (α′, 1) is equivalent to (α, 1). It is easily checked that ηη′

and η′η are identity maps. 2

4. Higher non-abelian cohomology

Let (A, µ) be a G-partially crossed P -module. Take the free cotriple
resolution F∗(G) of the group G:

· · ·
−→...−→
Fn+1

∂n+1

0−−→...−−→
∂n+1

n+1

Fn

∂n
0−→...−→
∂n

n

· · ·
−→...−→
F2

∂2
0−→
−→
−→
∂2
2

F1

∂1
0−→−→
∂1
1

F0 −→ G
(4.1)

with Fn = F n+1(A), n ≥ 0, F0 = F (A) is the free group generated
by A and F n+1(A) = F (F n(A)), ∂ni = F iτF n−i, sni = F iδF n−i, where
δ : F (A) −→ F 2(A) is induced by the canonical inclusion A → F (A).
Clearly (A, µ) can be viewed as a Fn-partially crossed P -module in-
duced by τ∂1

0∂
2
0 · · ·∂

n
0 . Therefore the group Der(Fn, (A, µ)), n ≥ 0, is

defined. Denote by Z̃1(Fn, (A, µ)) the subset of Der(Fn, (A, µ)) consist-
ing of all elements of the form (α, 1) for n odd and of the form (α, r)
for n even satisfying the condition

n+1∏

j=0

(α∂n+1
j )εj = 1 , εj = (−1)j .

Since µα(x) = 1 for any x ∈ Fn and for n odd, in this case we have

α(Fn) ⊂ Z(A), n ≥ 1. In the set Z̃1(Fn, (A, µ)), n ≥ 1, a relation ∼ is
introduced as follows:

(α′, 1) ∼ (α, 1) for n odd and (α′, r′) ∼ (α, r) for n even if there is
an element (β, h) ∈ Der(Fn−1, (A, µ)) such that

α′(x) = hα(x)
n∏

i=0

(β∂ni (x))εi , εi = (−1)i , x ∈ Fn ,

and r′ = r for n even.
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The homomorphism τ∂1
in
∂2
in−1
· · ·∂n−1

i2
∂ni1 does not depend of the se-

quence (i1, i2, · · · , in−1, in) implying

β∂nj (x) (β∂nl (x))
−1 = (β∂nl (x))−1(β∂nj (x) ∈ Kerµ , x ∈ Fn ,

for 0 ≤ j, l ≤ n. There follows that the product
∏n
i=0(β∂

n
i (x))

εi,
εi = (−1)i, does not depend on the order of the factors. Obviously the
aforedefined relation is an equivalence.

Definition 4.1. The higher non-abelian cohomology of a group G with
coefficients in a G-partially crossed P -module (A, µ) is given by

Hn+1(G, (A, µ)) = Z̃1(Fn, (A, µ))/ ∼ , n ≥ 1 .

It is easily checked that for n = 1 we recover the second cohomology
set of G with coefficients in (A, µ).

The map Hn+1(G,Kerµ) → Hn+1(G, (A, µ)) given by [f ] 7→ [(f, 1)]
is surjective and is bijective if µ : A→ P is the trivial homomorphism
(in this case A is abelian).

In order to express in terms of derived functors of the group of deriva-
tions with respect to the contravariant variable cohomotopy pointed
sets of some cosimplicial groups will be introduced.

Let

G∗ : G0
−→−→G1

−→
−→
−→
G2
−→...−→
· · ·
−→...−→
Gn

−→...−→
Gn+1

−→...−→
· · ·

be a cosimplicial group. Clearly ∂nj ∂
n−1
i = ∂ni ∂

n−1
j−1 , i < j.

Assume that G∗ satisfies the following condition:
(a) Denote by Ln+1 the subgroup of Gn+1 generated by

⋃n+1
i=0 ∂

n
i (Gn).

Then for any element x ∈ Gn, n ≥ 0, the product ∂ni (x) ∂nj (x)−1, 0 ≤ i,
j ≤ n, commutes with every element of Ln+1.

In particular it follows that one has the equality ∂ni (x) ∂
n
j (x)−1 =

∂nj (x)
−1 ∂ni (x), 0 ≤ i, j ≤ n, n ≥ 0.

Under this condition the cosimplicial group G∗ induces a group chain
complex

1 −→ G0
d0−→ G1

d1−→ G2
d2−→ · · ·Gn

dn−→ Gn+1
dn+1

−−→ · · ·

with dn(x) =
∏n+1
i=0 ∂

n
i (x)εi, εi = (−1)i, n ≥ 0. It is easily checked that

the maps dn, n ≥ 0, are homomorphisms and dndn−1 = 0, n ≥ 1.

Definition 4.2. The right quotient sets Ker dn/ Im dn−1 will be called
cohomotopy sets πn(G∗), n ≥ 0, of the cosimplicial group G∗.

It is obvious that for abelian cosimplicial groups we recover the well
known homology groups.
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Proposition 4.3. Let

1 −→ G′

∗
−→ G∗ −→ G′′

∗
−→ 1

be a short exact sequence of cosimplicial groups satisfying condition (a).
Then there is a long exact sequence of pointed cohomotopy sets

1 −→ π0(G
′

∗
) −→ π0(G∗) −→ π0(G

′′

∗
) −→ π1(G

′

∗
) −→ · · · −→

πn−1(G
′′

∗
) −→ πn(G

′

∗
) −→ πn(G∗) −→ πn(G

′′

∗
) −→ πn+1(G

′

∗
) −→ · · ·

Proof. Straightforward. 2

This definition of cohomotopy pointed sets defined for cosimplicial
groups satisfying the aforementioned condition allows us to define cotriple
right derived functors of some group valued contravariant functors.

Let A be an arbitrary category and F = (F, τ, δ) be a cotriple in the
category A. For any object A ∈ obA take its cotriple resolution:

F∗(A)
τ
−→A .

similarly to the case of groups considered above.
Let T : A→ Gr be a contravariant functor to the category of groups

satisfying the following condition:
(b) the product T∂n+1

i (x) T∂n+1
j (x)−1, 0 ≤ i, j ≤ n + 1, n ≥ 0,

commutes with every element of the subgroup of TFn+1(A) generated
by

⋃n+2
i=0 ImT∂n+1

i , n ≥ 0.

Definition 4.4. The right derived functors of the contravariant func-
tor T with respect to the cotriple F are the pointed sets

Rn
F
T (A) = πn(TF∗(A)) , n ≥ 0 , A ∈ obA .

If f : A → A′ is a morphism of the category A, then one gets a
morphism TF∗(f) : TF∗(A

′) → TF∗(A) inducing maps of pointed sets
Rn

F
T (f) := πnTF∗(f) : Rn

F
T (A′)→ Rn

F
T (A), n ≥ 0.

Remark 4.5. Similarly are defined the right derived functors Rn
L
T

with respect to a triple L in the category A for group valued covariant
functors T satisfying the same condition.

As noted above the main application of these derived functors will
be their close relationship with non-abelian cohomology of groups.

Let (A, µ) be a G-partially crossed P -module and consider the free
cotriple resolution F∗(G) of the group G (see (4.1)). In general the
cosimplicial group DerF∗(G) does not verify condition (a), in other
words the contravariant functor Der(−, (A, µ)) from the category of
groups acting on (A, µ) to the category of groups Gr does not verify
condition (b). Below it will be shown that for a wide class of coefficients
(A, µ) condition (b) holds for the functor Der(−, (A, µ)).
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One gets a sequence of groups and maps

1 −→ Der(F0, (A, µ))
d0−→ Der(F1, (A, µ))

d1−→ · · · −→

−→ Der(Fn, (A, µ)
dn−→ Der(Fn+1, (A, µ))

dn+1

−−→ · · · (4.2)

with dn((α, r))(x) = (γ, s), where γ =
∏n+1
i=0 (α∂n+1

i )εi, εi = (−1)i,
(α, r) ∈ Der(Fn, (A, µ)), x ∈ Fn+1, s = 1 for n even and s = r for n
odd.

Introduce in Ker dn, n ≥ 0, an equivalence by (α′, r′) ∼ (α, r) ⇐⇒
∃ (β, h) ∈ Der(Fn−1, (A, µ)) such that α′(x) = hα(x)

∏n
i=0β∂

n
i (x)εi,

εi = (−1)i, r′ = r. Clearly the quotient sets coincide withHn+1(G, (A, µ)),
n ≥ 1. It is easily checked that one has Ker d0 ≈ Der(G, (A, µ)). More-
over, the composite dndn−1, n ≥ 1, is the trivial map and the maps dn
are homomorphisms for n odd.

Proposition 4.6. Let (A, µ) be a G-partially crossed P -module such
that P acts trivially on Kerµ. Then the maps dn of the sequence (4.2)
are homomorphisms for all n ≥ 0. Moreover, in this case Im dn belongs
to the center of Der(Fn+1, (A, µ)) for n even and Ker dn belongs to the
center of Der(Fn, (A, µ)) for n odd.

Proof. Easily to check using the equalities α∂n+1
i (x) α∂n+1

j (x)−1 =

α∂n+1
j (x)−1 α∂n+1

i (x), 0 ≤ i, j ≤ n+1, for (α, r) ∈ Der(Fn, (A, µ)) and
the fact that in this case any element of the form (α, 1) ∈ Der(Fn, (A, µ))
belongs to the center. 2

Theorem 4.7. Let (A, µ) be a G-partially crossed P -module with P
acting trivially on Kerµ and let F be the free cotriple in the category
of groups acting on (A, µ).

(i) One has isomorphisms

R0
F

Der(G, (A, µ)) ≈ Der(G, (A, µ)) ,

Rn
F

Der(G, (A, µ)) ≈ Hn+1(G, (A, µ)) , n ≥ 1 ,

and Hn+1(G, (A, µ)) is an abelian group for n odd.
(ii) Any short exact sequence of G-partially crossed P -modules

1 −→ (A′, µ′)
ϕ
−→ (A, µ)

ψ
−→ (A′′, µ′′) −→ 1
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with P acting trivially on Kerµ′, Kerµ and Kerµ′′, induces a long
exact cohomology sequence

1 −→ Der(G, (A′, µ′)) −→ Der(G, (A, µ)) −→ Der(G, (A′′, µ′′)) −→

−→ H2(G, (A′, µ′)) −→ H2(G, (A, µ)) −→ H2(G, (A′′, µ′′)) −→

−→ H3(G, (A′, µ′)) −→ · · · −→ Hn−1(G, (A′′, µ′′)) −→

−→ Hn(G, (A′, µ′)) −→ Hn(G, (A, µ)) −→ Hn(G, (A′′, µ′′)) −→

−→ Hn+1(G, (A′, µ′)) −→ · · · .

Proof. Since the functor Der(−, (A, µ)) satisfies condition (b) with re-
spect to the free cotriple F, the right derived functors of Der(−, (A, µ))
are well defined, the sequence (4.2) became a complex of non-abelian
groups and the statement of (i) follows from Proposition 4.6.

The short exact coefficient sequence of (ii) induces a short exact
sequence of cosimplicial groups

1 −→ Der(F∗(G), (A′, µ′)) −→ Der(F∗(G), (A, µ)) −→

Der(F∗(G), (A′′, µ′′))→ 1

satisfying condition (a). It remains to apply Proposition 4.3 to get the
required long exact cohomology sequence. 2

The definition of non-abelian cohomology with coefficients in G-
partially crossed P -modules allows as to introduce the definition of
higher non-abelian cohomology of a group G with coefficients in any
G-group. It can be done as follows.

Let A be an arbitrary G-group, that means the group G acts on the
left on the group A. Take the quotient group P = A/Z(A). Define an
action of P on A and an action of G on P as follows:

[a′]a = a′a , [a′] ∈ P , a, a′ ∈ A .
g[a] = [ga] , g ∈ G , a ∈ A .

Let µA : A −→ P be the canonical homomorphism. It is easily
checked that the pair (A, µA) is a G-crossed P -module under the afore-
defined actions.

Definition 4.8. The n-th cohomology Hn(G,A), n ≥ 0, of the group
G with coefficients in a G-group A is given by

Hn(G,A) = Hn(G, (A, µA)) , n ≥ 0 .

For n = 1 this cohomology differs from the first pointed set coho-
mology defined in [10].

Let

1 −→ A
ϕ
−→B

ψ
−→ C −→ 1



26 HVEDRI INASSARIDZE

be a central extension of G-groups. Then ψ induces an isomorphism
of G-groups ϑ : B/Z(B)

≈

−→ C/ψ(Z(B)) and one gets a short exact
sequence of G-crossed P -modules with P = B/Z(B)

1 −→ (A, 1)
ϕ
−→ (B, µB)

ψ
−→ (C, µC) −→ 1 ,

where µC is the composite of the canonical map C → C/ψ(Z(B)) and
the isomorphism ϑ−1.

Corollary 4.9. Any central extension of G-groups

1 −→ A
ϕ
−→B

ψ
−→ C −→ 1

induces a long exact cohomology sequence

1 −→ H0(G,A)
ϕ0

−→ H0(G,B)
ψ0

−→ H0(G,C)
δ0
−→ H1(G,A)

ϕ1

−→

H1(G,B)
ψ1

−→ H1(G, (C, µC))
δ1
−→ H2(G,A)

ϕ2

−→ H2(G,B)
ψ2

−→

H2(G, (C, µC))
δ2
−→ H3(G, (G,A)

ϕ3

−→ · · · −→ Hn−1(G, (C, µC))
δn−1

−−→

Hn(G,A)
ϕn

−→ Hn(G,B)
ψn

−→ Hn(G, (C, µC))
δn

−→ Hn(G,A) −→ · · · .

Proof. Clearly in the induced short exact sequence of G-crossed P -
modules the group P acts trivially on KerµB and KerµC . So we can
apply Theorem 4.7 giving together with Theorem 3.6 the required long
exact cohomology sequence. 2
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